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Self-diffusion in granular gases
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The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the
impact-velocity dependence of the restitution coefficiente is taken into account. For the case of a constante
the particles spread logarithmically slowly with time, whereas a velocity-dependent coefficient yields a power
law time dependence. The impact of the difference in these time dependences on the properties of a freely
cooling granular gas is discussed.

PACS number~s!: 81.05.Rm, 36.40.Sx, 51.20.1d, 66.30.Hs
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I. INTRODUCTION

The behavior of a freely evolving granular gas has be
intensively discussed recently. In particular, the process
cluster formation due to inelastic collisions has been of w
interest, e.g.,@1–3#. On the basis of a continuum descriptio
the effect of clustering in a force-free granular gas has b
explained as an instability of the hydrodynamic equatio
@1–3#. For a deeper understanding of clustering phenom
it may be worth considering the processes in a granular
thatprecedeclustering. To this end we investigate the effe
of self-diffusion of particles in the regime of homogeneo
cooling.

The collisions of particles in a granular gas can be
scribed by the coefficient of restitutione which relates the
normal component of the relative velocityvW i j 5vW i2vW j before
a collision to that after the collisionvW i j8 as uvW i j8 •eW u5euvW i j •eW u.
The unit vectoreW5rW i j /urW i j u gives the direction ofrW i j 5rW i

2rW j at the instant of the collision.
To our knowledge, all analytical calculations for th

force-free case reported so far refer to systems of parti
colliding with a constant restitution coefficiente. Experi-
ments as well as theoretical studies show, however, the
depends on the normal component of the impact velo
uvW i j •eW u @4#.

The problem of the restitution coefficient’s dependen
on the impact velocity has been addressed in@5#, where the
generalization of the Hertz contact problem was develo
for the collision of three-dimensional~3D! viscoelastic
spheres. From this generalized Hertz equation one obt
the velocity-dependent restitution coefficient@6# as an expan-
sion:

e512C1S 3A

2 Da2/5ueW•vW i j u1/51C2S 3A

2 D 2

a4/5ueW•vW i j u2/57•••

~1!

with

a5
2 YARe f f

3 me f f~12n2!
, ~2!
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whereY is the Young modulus,n is the Poisson ratio, andA
depends on dissipative parameters of the particle mate
~for details see@5#!. The effective mass and radius are d
fined as

R e f f5R1R2 /~R11R2!, ~3!

me f f5m1m2 /~m11m2!, ~4!

with R1/2 andm1/2 being the radii and masses of the collidin
particles. The constantsC151.153 44 andC250.798 26
were obtained analytically@6# and then confirmed by nu
merical simulations and may be also written in a closed fo
as @7#

C15
G~3/5!Ap

21/552/5G~21/10!
, ~5!

C25
3

5
C1

2 . ~6!

Equation~1! refers to the case of pure viscoelastic intera
tion, i.e., when the relative velocitiesuvW i j •eW u are not too large
~to avoid plastic deformation of the particles! and not too
small ~to allow neglect of surface effects such as roughne
adhesion, and van der Waals interactions!. This implies that
the initial temperature of the granular gas is not too large
the final temperature is not too small. The range of valid
of Eq. ~1! depends on material and surface properties.
spite of such restrictions some important systems in na
do exist ~e.g., planetary rings! where these conditions ar
satisfied@8#. Here we assume that the granular gas conditi
allow for the application of Eq.~1!.

For an equilibrium 3D system the time dependence of
mean-square displacement reads

^@Dr ~ t !#2&eq56Dt, ~7!

where^•••&eq denotes theequilibrium ensemble averaging
To calculate the mean-square displacement, one writes

^@Dr ~ t !#2&eq5K E
0

t

vW ~ t8!dt8E
0

t

vW ~ t9!dt9L
eq

~8!
1716 ©2000 The American Physical Society
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PRE 61 1717SELF-DIFFUSION IN GRANULAR GASES
and encounters then the velocity autocorrelation functi

^vW (t8)•vW (t9)&eq. For systems at equilibrium this depen
only on the time differenceut82t9u and decays with a char
acteristic timetv . Therefore, at timet@tv one arrives at the
self-diffusion coefficient

D5
1

3 E0

`

^vW ~0!•vW ~ t ! &eqdt. ~9!

For nonequilibriumsystems such as granular materials
concept of the self-diffusion coefficient may also be appli
but with some care and with necessary generalization. O
ously, this refers only to ‘‘liquid’’ or gaseous phases of t
material@9# where the particles have a noticeable mobili
In the following we also restrict ourselves to homogeneo
cooling and consider the stages of evolution preceding
cluster formation@1,3#, i.e., we assume that the granular m
terial is ~at least locally! homogeneous and isotropic. Henc
one can define the temperatureT(t), which decreases with
time due to the loss of energy according to inelastic co
sions. For the impact-velocity-dependent restitution coe
cient ~1! one has@6#

T5T0 /~11t/t0!5/3 ~10!

whereT0 is the initial temperature andt0 is the characteristic
time of the cooling process, which may be estimated as

t0
21;s2nAa2/5T0

3/5 ~11!

with s52R and n being the particle diameter and the pa
ticle number density, respectively. The mean collision tim

tc
21~ t ![4p1/2g2~s!ns2T1/2 ~12!

depends on time via the time-dependent temperature. H
g2(s) is the contact value of the two-particle radial distrib
tion function and the particles are of unit mass. Thus,
ratio of the two characteristic times reads

tc~ t !/t0;d11/6@ t/tc~0!#5/6 ~13!

where tc(0)21 is the collisional frequency at initial time
andd5Aa2/5T0

1/10 is supposed to be small. Clearly, one c
employ the concept of temperature iftc(t)/t0!1. Thus, Eq.
~13! gives the estimatet!tc(0)d211/5 for the upper time
limit for which the use of the local temperature is justified

An important property of a homogeneously coolin
granular gas is that the velocity distribution is close to Ma
wellian. Moreover, it persists with time, changing in acco
dance with the decreasing temperature@9#. The small value
of the fourth cumulant of the velocity distribution functio
for any value of the restitution coefficient reported in@10#
also supports the Maxwellian distribution@10,11#. Therefore,
we assume that the Maxwellian distribution and the mole
lar chaos hypothesis may be used with a good degre
accuracy@12#.

The evolution on the hydrodynamic time scale may
described using the kinetic coefficients calculated on
short time scalet;tc . For granular gases these transp
coefficient will be time dependent. We calculate the se
diffusion coefficient within the uncorrelated binary collision
,

e
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approximation and assume that the inequalitytc(t)!t0 al-
ways holds true~see the above discussion on this conditio!.
Thus, on the time scalet;tc the temperature may be con
sidered as a constant. Fort@tc , however, the self-diffusion
coefficient becomes time dependent~so that one prefers to
call this quantity ‘‘diffusivity’’ ! and the generalization of Eq
~7! reads

^@Dr ~ t !#2&56 E t

D~ t8!dt8 ~14!

where^•••& denotes averaging over thenonequilibriumen-
semble, whose evolution is described by a time-depend
N-particle distribution functionr(t). Here we restrict our-
selves to times when the hydrodynamic contribution to
self-diffusion coefficient is not large@13#, so that Eq.~14!
with D(t) calculated on the time scalet;tc gives an accu-
rate description of the mean-square displacement.

The aim of the present study is to analyze how the vel
ity dependence of the restitution coefficient influences
diffusion in a gas of identical particles. The paper is org
nized as follows. In Sec. II we obtain the time dependence
the diffusivity and the temperature of the granular gas in
homogeneous cooling state. We also show that the me
square displacement depends on time quite differently for
case of the constant restitution coefficient and for that de
mined by the impact velocity. In Sec. III we discuss o
results for the mean-square displacement in the context o
possible impact on clustering.

II. TIME DEPENDENCE OF THE DIFFUSION
COEFFICIENT AND OF TEMPERATURE

To describe the dynamics of the granular material we
the formalism of the pseudo-Liouville operatorL @15#

iL5(
j

vW j•
]

]rW j

1(
i , j

T̂i j . ~15!

The first sum in Eq.~15! refers to the free streaming of th
particles~the ideal part! while the second sum refers to th
particle interactions, which are described by the binary c
lision operators@18#

T̂i j 5s2E d2eW Q~2vW i j •eW !uvW i j •eW ud~rW i j 2seW !~ b̂i j
eW 21!

~16!

where Q(x) is the Heaviside function. The operatorb̂i j
eW is

defined as

b̂i j
eW f ~rW i ,rW j ,vW i ,vW j , . . . !5 f ~rW i ,rW j ,vW i8 ,vW j8 , . . . !, ~17!

wheref is some function of dynamical variables. The afte
collision velocities of the colliding particles,vW i8 andvW j8 , are

related to their precollisional valuesvW i , vW j via

vW i , j8 5vW i , j7
1
2 ~11e!~vW i j •eW !eW . ~18!

The pseudo-Liouville operator gives the time derivati
of any dynamical variableB ~e.g.,@17#!:
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d

dt
B~$rW i ,vW i%,t !5 iL B~$rW i ,vW i%,t ! ~19!

and, therefore, the time evolution ofB reads (t.t8)

B~$rW i ,vW i%,t !5eiL(t2t8)B~$rW i ,vW i%,t8!. ~20!

With Eq. ~20! the time correlation function reads

^B~ t8!B~ t !&5E dGr~ t8!B~ t8!eiL(t2t8)B~ t8!, ~21!

where*dG denotes integration over all degrees of freed
and r(t8) depends on temperatureT, densityn, etc., which
change on a time scalet@tc . In accordance with the mo
lecular chaos assumption att;tc the sequence of successiv
collisions occurs without correlations. If the variableB does
not depend on the positions of the particles, its time corre
tion function reads@19#

^B~ t8!B~ t !&5^B2& t8e
2ut2t8u/tB(t8) ~ t.t8!, ~22!

where^•••& t8 denotes averaging with the distribution fun
tion taken at timet8. The relaxation timetB is inversely
proportional to the initial slope of the autocorrelation fun
tion @19#. It may be found from the time derivative o
^B(t8)B(t)& taken at t5t8. Equations~21! and ~22! then
yield

2tB
21~ t8!5E dGr~ t8!BiLB/^B2& t85

^BiLB& t8

^B2& t8

. ~23!

The relaxation timetB
21(t8), depending on time via the dis

tribution functionr(t8), changes on the time scalet@tc .
Let B(t) be the velocity of some particle, sayvW 1(t). Then

with 3T(t)5^v2& t Eqs. ~22! and ~23! @with Eqs. ~15! and
~16!# read

^vW 1~ t8!•vW 1~ t !&53T~ t8!e2ut2t8u/tv(t8), ~24!

2tv
21~ t8!5~N21!

^vW 1•T̂12vW 1& t8

^vW 1•vW 1& t8

. ~25!

To obtain Eq. ~25! we take into account thatL0vW 150,
T̂i j vW 150 if iÞ1 and the identity of the particles. The calc
lation of tv

21(t8) may be performed if we assume that t
distribution functionr(t8) is a product of the coordinat
part, which corresponds to a uniform and isotropic syste
and a velocity part that is a product of Maxwellian distrib
tion functions,

f~vW i !5
exp@2v i

2/2T~ t8!#

@2pT~ t8!#3/2
, i 51, . . . ,N. ~26!

Integration over the coordinate part in Eq.~25! yields

~N21!E r~ t8!d~rW i j 2seW !drW1•••drWN5ng2~s!)
i

f~vW i !,

~27!
-

,

where we use the definition of the configurational distrib
tion functions@17#, and where@17,19#

g2~s!5 1
2 ~22h!/~12h!3 ~28!

gives the contact value of the configurational distributi
function andh5 1

6 pns3. With

^vW 1T̂12vW 1& t85
1
2 ^vW 12T̂12vW 1& t8 ~29!

due to the collision rules and definition~16!, one finally ar-
rives at

tv
21~ t8!5

1

4
ng2~s!s2E dvW 12f~vW 12! ~30!

E d2eW Q~2vW 12•eW !uvW 12•eW u ~vW 12•eW !2~11e!/^vW 1•vW 1& t8 ,

where

f~vW 12!5~4pT!23/2exp~2v12
2 /4T! ~31!

is the Maxwellian distribution for the relative velocity of tw
particles. Fore not depending onv12, Eq. ~30! yields

tv
21~ t !5

e11

2

8

3
ns2g2~s!ApT~ t !5

e11

2
tE

21~ t !,

~32!

wheretE(t)5 3
2 tc(t) is the Enskog relaxation time@17#. For

the granular gas it depends on time according to the s
time scale as the temperature. As shown in Eq.~32! the ve-
locity correlation time for inelastic collisions exceeds that
elastic ones. This follows from partial suppression of t
backscattering of particles due to inelastic losses in their n
mal relative motion. As a result the trajectories of partic
are more stretched as compared with the elastic case,
therefore the velocity correlation time is larger.

As discussed above, a constant restitution coefficien
not consistent with the nature of the inelastic collisions. S
stituting Eq.~1! into Eq. ~30! one finds the velocity correla
tion time for the gas of inelastically colliding spheres:

tv
21~ t !5tE

21~ t !$12 3
4 G~ 21

10 !C1Aa2/5@4T~ t !#1/10

1 27
40 G~ 11

5 !C1
2A2a4/5@4T~ t !#1/57•••%, ~33!

whereG(x) is the gamma function,tE is given by Eq.~32!
@21# and we use Eq.~6!, which relates the coefficientsC1
andC2. From Eq.~33! it follows that the velocity autocorre
lation function decays~as expected! on a short time scale
sincetv is of the order oftc .

Using the velocity correlation function one writes

^@Dr ~ t !#2&52E
0

t

dt83T~ t8!E
t8

t

dt9e2ut92t8u/tv(t8). ~34!

On the short time scalet;tc , T(t8) and tv(t8) may be
considered as constants. Integrating in Eq.~34! over t9 and
equating with Eq.~14! yields for t@tc;tv the diffusivity
~time-dependent self-diffusion coefficient!
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PRE 61 1719SELF-DIFFUSION IN GRANULAR GASES
D~ t !5T~ t !tv~ t !. ~35!

Using the pseudo-Liouville operator one can also desc
the time dependence of the temperature of the granular
with the impact-velocity-dependent restitution coefficie
From Eq.~19! it follows that ~see also@20#!

Ṫ~ t !5
1

3

d

dt
^v2& t5

1

3
^ iL v2& t . ~36!

Calculations similar to that fortv(t8) yield

Ṫ52b1T8/51b2T17/107•••, ~37!

b154321/5p1/2G~ 21
10 !C1s2ng2~s!Aa2/5,

b25 33
5 22/5p1/2G~ 11

5 !C1
2s2ng2~s!A2a4/5.

Solving Eq. ~37! and expanding the result in terms of th
small parameter

d5Aa2/5T0
1/10, ~38!

one arrives at

T~ t !

T0
5S 11

t

t0
D 25/3

1a1 dS 11
t

t0
D 211/6

1a2d2 S 11
t

t0
D 22

1••• ~39!

with a1 anda2 being pure numbers@22# and with

t0
215dtc~0!213 3

5 21/5C1G~ 21
10 !50.831928dtc~0!21.

~40!

The leading term in this expansion corresponds to the de
dence~10! obtained previously using scaling arguments@6#.
From Eqs.~35!, ~39!, and~33! follows the time dependenc
of the self-diffusion coefficient:

D~ t !

D0
5S 11

t

t0
D 25/6

1a3 dS 11
t

t0
D 21

1a4d2 S 11
t

t0
D 27/6

1••• ~41!

with pure numbersa3 anda4 @22# and with

D0
215 8

3 p1/2s2g2~s!nT0
21/2. ~42!

Correspondingly, the mean-square displacement reads
ymptotically att0!t

^@Dr ~ t !#2&;t1/61a3d ln t. ~43!

This dependence holds true for time

tc~0! d21!t!tc~0! d211/5, ~44!

where the first inequality follows from the conditiont0!t,
while the second one follows from the discussed condit
tc(t)!t0. Note that Eqs.~43! and ~44! imply that terms of
the order;d2 are negligible, which requires that the tem
perature be sufficiently small and/or the time be sufficien
large @23#. For a constant restitution coefficient one obtai
e
as
.

n-

as-

n

y

T~ t !/T05@11g0t/tc~0!#22, ~45!

whereg0[(12e2)/6 @1,14#. Thus using Eqs.~32! and ~35!
one obtains for the mean-square displacement in this ca

^@Dr ~ t !#2&; ln t. ~46!

It follows from Eqs.~43! and ~46! that the impact-velocity-
dependent restitution coefficient~1! leads to a significant
change of the long time behavior of the mean-square
placement of particles in laboratory time. Compared to
logarithmically weak dependence for a constant restitut
coefficient, the impact-velocity dependence of the restitut
coefficient~1! gives rise to a considerably faster increase
this quantity with time, according to a power law.

III. RESULTS AND DISCUSSION

We studied the diffusion of particles in a homogeneou
cooling granular gas. With the assumption of molecu
chaos we calculated the velocity time correlation functi
and the diffusivity~the time-dependent self-diffusion coeffi
cient!. For an impact-velocity-dependent restitution coef
cient we found a relation that expresses the diffusivity
terms of the material constants of particles and characte
tics of the granular gas, such as temperature, density, et

In our calculations we used the restitution coefficient
viscoelastic collision of particles, which depends on the n
mal component of the impact velocityuvW i j •eW u as a series
(uvW i j •eW ug with g51/5, g52/5, . . . @Eq. ~1!#. Our approach
can be extended to arbitrary exponentsg, which let the ex-
pansion~1! converge. Using these exponents one may po
bly describe collisions with very large impact velocitie
~when plastic deformation occurs! or very small velocities
~when the surface effects are important!, provided fragmen-
tation and/or coagulation are ignored.

For granular particles suffering viscoelastic collisions w
found that the mean-square displacement grows with tim
a power law;t1/6, i.e., much faster than the logarithm
growth ; ln t, observed in granular gases with a consta
restitution coefficient. It is worth noting that qualitativel
this power law dependence~as well as the logarithmic one!
simply follows from scaling arguments and the time depe
dence of temperature. Indeed, the average velocity scale

v̄;T1/2, and therefore as;t21 for a constant restitution co
efficient and as;t25/6 for an impact-velocity-dependent co
efficient. The diffusivity in a granular gas scales asD
; l 2/tc , wherel;s22n21 is the mean free path, which doe
not change with time~in the regime preceding clustering!,
and tc; l / v̄ is the mean collision time. Thus,D; l v̄;T1/2,
and we obtain that the mean-square displacement,* tD(t)dt,
scales as; ln t in the former case and as;t1/6 in the latter
case.

What will be the impact of this apparently dramatic d
ference in the time dependence of^@Dr (t)#2& on the proper-
ties of granular gases? In laboratory time this correspond
the enhanced spreading~and therefore mixing! of particles
with the velocity-dependent restitution coefficient as co
pared to the case of constante. Since the temperature de
creases more slowly for the former case, as;t25/3, as com-
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pared with;t22 for the latter one, retarded clustering ma
be expected.

One might wish to define the average cumulative num
of collisions per particleN(t) as a system-inherent tim
scale (t is the laboratory time! and compare dynamics of th
systems in their inherent time scales.N(t) is easily acces-
sible in numerical simulations and is a convenient quantity
analyze evolution of granular gases~e.g.,@24,26#!. It may be
found by integratingdN5tc(t)

21dt @14#. For a constant
restitution coefficient one obtainsN(t); ln t, while for the
impact-velocity-dependentN(t);t1/6. Therefore, the mean
square displacement behaves identically in both cases a

^@Dr ~N!#2&;N. ~47!

If the number of collisions per particleN(t) were the only
quantity specifying the stage of the granular gas evoluti
one would conjecture that the dynamical behavior of
granular gas with a constante and a velocity-dependente is
identical provided theN-based time scale is used. Accordin
to our understanding, however, this is not an adequate
scription of physical reality. Indeed, as was shown in R
@24#, the values ofNc corresponding to a crossover from th
linear regime of evolution~which refers to homogeneou
cooling! to the nonlinear regime~when clustering starts! may
differ by orders of magnitude, depending on the restitut
coefficient and on the density of the granular gas. Theref
to analyze the behavior of a granular gas one can try
alternative inherent time scale,T 21[T(t)/T0, which is
based on the gas temperature@25#. Given two systems of
granular particles at the same density and the same in
temperatureT0, consisting of particles colliding with con
stant and velocity-dependent restitution coefficients, resp
tively, the timeT allows us to compare their evolution d
rectly. A strong argument for using a temperature-based t
has been given by Goldhirsch and Zanetti@1#. They found
that there are two main contributions to the rate of tempe
ture decay. The first refers to cooling due to inelastic co
sions with a rate;T3/2 ~for constante) and corresponds to
homogeneous cooling. The second refers to viscous hea
and behaves as;T1/2. Initially, the first is much larger than
the second, but when temperature decays, the second c
bution takes over and the shear wave adiabatically ensl
the temperature field@1#. This corresponds to the nonlinea
-

,

r

o

,
a

e-
f.

n
e,
n

ial

c-

e

-
-

ng

tri-
es

stage of evolution, when clustering starts. Thus, the temp
ture may indicate the stage of evolution of a granular g
The recent numerical results of Ref.@24# strongly support
our assumption. It was shown that whileNc differs by more
than a factor of 3 for two different systems (Nc570 for a
system withe50.9 and packing fractionf50.245, andNc
523 for e50.6 andf50.05@24#!, the values ofTc @defined
asT(Nc)/T0] , are very close (Tc'0.0031 for the first sys-
tem andTc'0.0027 for the second@24#!. These arguments
show that one could considerT as a relevant time scale t
analyze granular gas evolution.

With T(N)/T0;e22g0N for a constant restitution coeffi
cient andT(N)/T0;N 210 for an impact-velocity-dependen
one, we obtain̂ (Dr )2&; ln T for the case of constante and

^~Dr !2&;T 1/10 ~48!

for the velocity-dependent restitution coefficient. Thus,
the temperature-based inherent time scale we again obta
power law dependence for the latter system and a loga
mically weak time-dependence for the former.

In conclusion, we found that that the impact-velocity d
pendence of the restitution coefficiente significantly influ-
ences the mean-square displacement of the particles
granular gas in laboratory time. As compared with the log
rithmically weak time dependence found for a constant r
titution coefficient, the impact-velocity-depending coefficie
~1! yields a power law~43!. It causes increasingly enhance
spreading of the particles through the system. This toge
with the fact that the temperature decreases more slowly
the velocity-dependente leads to the suggestion of retarde
clustering in such systems.

We also analyzed the mean-square displacement of
ticles using different inherent time scales. We found th
while for the number-of-collisions-based time scale both s
tems behave identically, for the temperature-based time s
power law behavior is still observed for the case of t
velocity-dependent coefficient and logarithmically weak b
havior for the case of constante.
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