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Self-diffusion in granular gases
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The coefficient of self-diffusion for a homogeneously cooling granular gas changes significantly if the
impact-velocity dependence of the restitution coefficiems taken into account. For the case of a constant
the particles spread logarithmically slowly with time, whereas a velocity-dependent coefficient yields a power
law time dependence. The impact of the difference in these time dependences on the properties of a freely
cooling granular gas is discussed.

PACS numbsg(s): 81.05.Rm, 36.40.Sx, 51.26d, 66.30.Hs

[. INTRODUCTION whereY is the Young modulusy is the Poisson ratio, and{
depends on dissipative parameters of the particle material
The behavior of a freely evolving granular gas has beertfor details seg5]). The effective mass and radius are de-
intensively discussed recently. In particular, the process ofined as
cluster formation due to inelastic collisions has been of wide

interest, e.g.j1—3]. On the basis of a continuum description Re"=R,R,/(R;+Ry), (3
the effect of clustering in a force-free granular gas has been off
explained as an instability of the hydrodynamic equations me=mymy/(my+my), (4)

[1-3]. For a deeper understanding of clustering phenomena ] . o

it may be worth considering the processes in a granular gadith Ry andm,, being the radii and masses of the colliding

that precedeclustering. To this end we investigate the effectParticles. The constant€,=1.15344 andC,=0.79826

of self-diffusion of particles in the regime of homogeneousWere obtained analytically6] and then confirmed by nu-

cooling. merical simulations and may be also written in a closed form
The collisions of particles in a granular gas can be de@s[7]

scribed by the coefficient of restitution which relates the

normal component of the relative velocﬁyJ =V —\7j before

a collision to that after the collision; as|v/;-€|=¢|v;-€].

The unit vectore=r;; /|r;;| gives the direction off;;=r, 3

—r; at the instant of the collision. C,=—C2. 6
J . . 2 5 1 ( )
To our knowledge, all analytical calculations for the

force-free case reported so far refer to systems of particles . ) .

colliding with a constant restitution coefficiert Experi- Equation(1) refers to the case of paureawscoelastlc interac-

ments as well as theoretical studies show, however, ¢hat tion, i.e., when the relative velociti¢g;; - €| are not too large

depends on the normal component of the impact velocityto avoid plastic deformation of the particjeand not too
|\7._ ) él [4] small (to allow neglect of surface effects such as roughness,
i .

The problem of the restitution coefficient's dependenceadh.es.'pn' and van der Waals mteractiﬁoﬁius implies that
on the impact velocity has been addressef5in where the the |r_1|t|al temperature_of the granular gas is not too Iargg a_md
generalization of the Hertz contact problem was developeH}eEflnallte:jnperagure IS not top Ismagl. Thfe range of V.a“d't?/
for the collision of three-dimensiona(3D) viscoelastic of Eg. (1) depen S on matena_an surtace propgrtles. n
spheres. From this generalized Hertz equation one obtai ite of such restrictions some important systems in nature

the velocity-dependent restitution coeffici¢ft as an expan-  9° .e>_<ist (e.g., planetary ringswhere these conditions are
satisfied 8]. Here we assume that the granular gas conditions

[(3/5)

:—’ 5
21552151 (21/10 ©

1

sion: o
allow for the application of Eq(l).
3n 3A|2 For an equilibrium 3D system the time dependence of the
e=1— C1<7> a'2/5|é'\7ij |1,5+ CZ(T) a4/5|é'\7ij |2,51 o mean-square displacement reads
1 <[Ar(t)]2>eq:6Dta (7)
with where(- - - )¢q denotes theequilibrium ensemble averaging.

To calculate the mean-square displacement, one writes

2 YVR®

a=
3 m*'(1-v?)

t. t.
<[Ar(t)]2>eq=< fov(t')dt’fov(t")dt”> tS)

eq

, (2

~
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and encounters then the velocity autocorrelation functionapproximation and assume that the inequalifft) <7, al-

<\7(t’)~\7(t”))eq. For systems at equilibrium this depends ways holds truésee the above discussion on this condition

only on the time differencét’ —t”| and decays with a char- Thus, on the time scale~ 7. the temperature may be con-
acteristic timer, . Therefore, at timé> 7, one arrives at the sidered as a constant. For 7., however, the self-diffusion

self-diffusion coefficient coefficient becomes time dependérb that one prefers to
call this quantity “diffusivity”) and the generalization of Eq.
1 (= . - (7) reads
o3 [ (0 vt gt ©
t
I : <[Ar(t)]2)=6f D(t")dt’ (14)
For nonequilibriumsystems such as granular materials the

concept of the self-diffusion coefficient may also be applied,

but with some care and with necessary generalization. Obvi/N€ré(- - -) denotes averaging over timenequilibriumen-

ously, this refers only to “liquid” or gaseous phases of thesemble, whose evolution is described by a time-dependent

material[9] where the particles have a noticeable mobility. \-Particle distribution functiorp(t). Here we restrict our-

In the following we also restrict ourselves to homogeneouéelves to times Whe_n th? hydrodynamic contribution to the
cooling and consider the stages of evolution preceding th&€!-diffusion coefficient is not larggl3], so that Eq.(14)
cluster formatior{1,3], i.e., we assume that the granular ma—W'th D(t) gal_culated on the time Scate 7c gIVES an accu-
terial is (at least locally homogeneous and isotropic. Hence, 2t description of the mean-square displacement.

one can define the temperaturét), which decreases with . The aim of the present St.UdY IS to angl_yze how the veloc-

time due to the loss of energy according to inelastic colli-'ty de.pen.dence of thg restitution .coeff|C|ent |nfluences the
sions. For the impact-velocity-dependent restitution coeffi-d!foSIOn in a gas of identical part!cles. The paper 1S orga-
cient (1) one hag6] nlzed_ as f_ol_lows. In Sec. Il we obtain the time dependenc_e of
the diffusivity and the temperature of the granular gas in a

T=To/(1+1t/79)%3 (10  homogeneous cooling state. We also show that the mean-

square displacement depends on time quite differently for the

whereT, is the initial temperature ang} is the characteristic case of the constant restitution coefficient and for that deter-
time of the cooling process, which may be estimated as mined by the impact velocity. In Sec. Il we discuss our

results for the mean-square displacement in the context of its

7o 1~ o2 nAa?5TI® (11)  possible impact on clustering.
with =2R andn being the particle diameter and the par- II. TIME DEPENDENCE OF THE DIEFUSION
ticle number denSity, respectiVEIy. The mean collision time COEFFICIENT AND OF TEMPERATURE
. (t)=4mYg,(o)na? T2 (12 To describe the dynamics of the granular material we use

the formalism of the pseudo-Liouville operat6r[15]
depends on time via the time-dependent temperature. Here

g,(o) is the contact value of the two-particle radial distribu- _ .9 .
tion function and the particles are of unit mass. Thus, the iL=2 Vj'_m:» +E<, Tij - (19
J i 1<]

ratio of the two characteristic times reads

__ slu 5/6 The first sum in Eq(15) refers to the free streaming of the
7o(1)/ 7o~ 6"t/ 7(0)] (13 particles(the ideal paitwhile the second sum refers to the
where 7,(0) 1 is the collisional frequency at initial time, payticle interactions, which are described by the binary col-
and = Aa?5T¥%is supposed to be small. Clearly, one canliSion operatorg18]
employ the concept of temperaturerif(t)/ 7o<<1. Thus, Eq. )
(13) gives the estimaté<7,(0)8 *® for the upper time -‘rij:(ﬂf d’e0(—v;, .§)|\7ij.§|5(Fij_gé)(f,ﬁ._1)
limit for which the use of the local temperature is justified. (16)

An important property of a homogeneously cooling
granular gas is that the velocity distribution is close to Max-
wellian. Moreover, it persists with time, changing in accor-
dance with the decreasing temperat[8¢ The small value
of the fourth cumulant of the velocity distribution function UL S s s e,
for any value of the restitution coefficient reported[it0] bif(rioryvisvy, o O=Ffrrpvivg, o), (19
also supports the Maxwellian distributi¢h0,11]. Therefore, . . . .
we assume that the Maxwellian distribution and the moIecuWheref is some function of dynamical varlie\bles. ;I'he after-
lar chaos hypothesis may be used with a good degree &pollision velocities of the colliding particles, andvj’ , are

where ®(x) is the Heaviside function. The operatf)ﬁ is
defined as

accuracy[12]. related to their precollisional valuag, v; via
The evolution on the hydrodynamic time scale may be R
described using the kinetic coefficients calculated on the vi’,jzvi,11%(1+ €)(vij-e)e. (18

short time scaleé~ r.. For granular gases these transport
coefficient will be time dependent. We calculate the self- The pseudo-Liouville operator gives the time derivative
diffusion coefficient within the uncorrelated binary collisions of any dynamical variabl® (e.g.,[17]):
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aB({ri Vi) =1LB{ri,vif,t) (19
and, therefore, the time evolution Bfreads {>t')
B({ri vil,)=e“"B({r; v} t'). (20)

With Eq. (20) the time correlation function reads

(B(t)B(t))= f drp(t)B(t)e LB,  (21)

where [dI" denotes integration over all degrees of freedom

andp(t') depends on temperatufie densityn, etc., which
change on a time scate> .. In accordance with the mo-

lecular chaos assumptiontat 7, the sequence of successive

collisions occurs without correlations. If the varialdedoes

not depend on the positions of the particles, its time correla-

tion function read$19]

(B(t)B(1))=(B?) e VI (t>t"), (22
where(- -

tion taken at timet’. The relaxation timerg is inversely

proportional to the initial slope of the autocorrelation func-

tion [19]. It may be found from the time derivative of
(B(t")B(t)) taken att=t’. Equations(21) and (22) then
yield

BiLB),s
—Tgl(t’)zfde(t’)BiEB/(BZ)t,:<<IBT3t. (23

The relaxation timerB_l(t’), depending on time via the dis-
tribution functionp(t’), changes on the time scal®& 7.

Let B(t) be the velocity of some particle, sa?y(t). Then
with 3T(t)=(v?); Egs. (22 and (23) [with Egs. (15) and
(16)] read

(V1(t")-v(1))=3T(t")e =t~ (24)
— Yt =(N— 1)ﬂ. (25)
(Vi-vir

To obtain Eg.(25 we take into account that:o\71

T,Jvl—O if Hél and the identity of the particles. The calcu—
Y(t') may be performed if we assume that the

lation of 7,
d|str|but|on functionp(t’) is a product of the coordinate

part, which corresponds to a uniform and isotropic system
and a velocity part that is a product of Maxwellian distribu-

tion functions,

. exd —vA2T(t")]
¢(Vi)— [277T(t’)]3/2

1,...N. (26

Integration over the coordinate part in E&5) yields

(N—l)fp(t')é(ﬂj—aémﬂ---dFN=ng2<a>H B(V)),
(27)
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where we use the definition of the configurational distribu-
tion functions[17], and whergd 17,19

go(0)=3(2= /(1= 7)°

gives the contact value of the configurational distribution
function andy= t wno>. With

(28)

(VaTivi)e = 3(VisT 1V ) (29

due to the collision rules and definitiqi6), one finally ar-
rives at

1 - .
Nt = anz(U)(TzJ dvi¢(vio) (30
f d2€ O (—V1p €)[Vyp €] (V1o €21+ €)/(Vy Vi),
where
B(V1) = (47T) ¥ exp(—v3,4T) (31)

is the Maxwellian distribution for the relative velocity of two
particles. Fore not depending ow,,, Eq. (30) yields

=5~ no 2ga(a)mT(t) = rglm,
(32
whererg(t) =3 7.(t) is the Enskog relaxation tiné.7]. For

the granular gas it depends on time according to the same
time scale as the temperature. As shown in B@) the ve-
locity correlation time for inelastic collisions exceeds that of
elastic ones. This follows from partial suppression of the
backscattering of particles due to inelastic losses in their nor-
mal relative motion. As a result the trajectories of particles
are more stretched as compared with the elastic case, and
therefore the velocity correlation time is larger.

As discussed above, a constant restitution coefficient is
not consistent with the nature of the inelastic collisions. Sub-
stituting Eq.(1) into Eq. (30) one finds the velocity correla-
tion time for the gas of inelastically colliding spheres:

7, ()= (D){1- 3T (%) C1APT 4T ()]0

v

+ 50 (8)CIAZa"T4T(1)]% -}, (39
wherel'(x) is the gamma functionzg is given by Eq.(32)
[21] and we use Eq(6), which relates the coefficienis;
andC,. From Eq.(393) it follows that the velocity autocorre-
lation function decays$as expectedon a short time scale,
sincer, is of the order ofr,.
Using the velocity correlation function one writes

t t
<[Ar(t)]2>=2f dt’3T(t’)J dtre” "=t (34
0 t’

On the short time scale~ 7., T(t') and 7,(t’) may be
considered as constants. Integrating in E4l) overt” and
equating with Eq.(14) yields for t>r.~ 7, the diffusivity
(time-dependent self-diffusion coefficignt
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D()=T(t)7,(1). (39
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T()/To=[1+ yot/7e(0)] 2, (49

Using the pseudo-Liouville operator one can also describg ere yo=(1—€?)/6 [1,14]. Thus using Eqs(32) and (35)
the time dependence of the temperature of the granular 9gse gbtains for the mean-square displacement in this case

with the impact-velocity-dependent restitution coefficient.

From Eq.(19) it follows that (see alsd20])
T()= 5 (V=3 (1Lv2). 39
3 dt 3
Calculations similar to that for,(t") yield
T=—b, T+ b, T .. . (37)
b,=4x 25721 (21 C 0°ng,( o) Aa?®,

b,= % 22°7Y2 () Clo?ng,( o) A2a™”.

Solving Eq.(37) and expanding the result in terms of the

small parameter

5=Aa”" Ty, (39)
one arrives at
T(t) t —5/3 —11/6 t -2
T -\t +a,6 1+T—O +a,6° 1+T—O
+.- (39

with a; anda, being pure numberf22] and with

75 h= 87(0) 1x § 2¥5C,I'(3) = 0.8319287,(0) -
(40

([Ar(t)]?)~Int. (46)

It follows from Egs.(43) and (46) that the impact-velocity-
dependent restitution coefficieril) leads to a significant
change of the long time behavior of the mean-square dis-
placement of particles in laboratory time. Compared to its
logarithmically weak dependence for a constant restitution
coefficient, the impact-velocity dependence of the restitution
coefficient(1) gives rise to a considerably faster increase of
this quantity with time, according to a power law.

IIl. RESULTS AND DISCUSSION

We studied the diffusion of particles in a homogeneously
cooling granular gas. With the assumption of molecular
chaos we calculated the velocity time correlation function
and the diffusivity(the time-dependent self-diffusion coeffi-
ciend. For an impact-velocity-dependent restitution coeffi-
cient we found a relation that expresses the diffusivity in
terms of the material constants of particles and characteris-
tics of the granular gas, such as temperature, density, etc.

In our calculations we used the restitution coefficient for
viscoelastic collision of particles, which depends on the nor-
mal component of the impact velocity;;-€| as a series
2|\7ij .e|” with y=1/5, y=2/5, . .. [Eq. (1)]. Our approach
can be extended to arbitrary exponemtswhich let the ex-
pansion(1) converge. Using these exponents one may possi-
bly describe collisions with very large impact velocities

The leading term in this expansion corresponds to the depettwhen plastic deformation occyrer very small velocities

dence(10) obtained previously using scaling argumefs

From Egs.(35), (39), and(33) follows the time dependence

of the self-diffusion coefficient:

—5/6 -1 —716

D(t) t t )
- = 1+_ +a35 1+_ +a45 1+_
Do 70 70 7o
+-.- (41
with pure numbersg anda, [22] and with
Dy =& w202g,(o)n T, Y2, (42)

(when the surface effects are importamtrovided fragmen-
tation and/or coagulation are ignored.

For granular particles suffering viscoelastic collisions we
found that the mean-square displacement grows with time as
a power law~t'% i.e., much faster than the logarithmic
growth ~Int, observed in granular gases with a constant
restitution coefficient. It is worth noting that qualitatively
this power law dependendas well as the logarithmic one
simply follows from scaling arguments and the time depen-
dence of temperature. Indeed, the average velocity scales as

v~TY¥2 and therefore as-t~* for a constant restitution co-
efficient and as-t~>® for an impact-velocity-dependent co-

Correspondingly, the mean-square displacement reads asfficient. The diffusivity in a granular gas scales Bs

ymptotically atrg<<t

([Ar(1)]?)~tY6+azsInt. (43)
This dependence holds true for time

7:(0) 6~ t<t< 7 (0) 5715 (44)

where the first inequality follows from the conditia<t,

~12/ 7., wherel ~ o~ 2n" 1 is the mean free path, which does

not change with timgin the regime preceding clustering

and 7,~1/v is the mean collision time. Thuf~Iv~T2,
and we obtain that the mean-square displacenfébi(t)dt,
scales as-Int in the former case and ast'® in the latter
case.

What will be the impact of this apparently dramatic dif-
ference in the time dependence(pAr (t)]%) on the proper-

while the second one follows from the discussed conditiorties of granular gases? In laboratory time this corresponds to

7.(t)<7o. Note that Eqs(43) and(44) imply that terms of

the enhanced spreadirignd therefore mixingof particles

the order~ 6 are negligible, which requires that the tem- with the velocity-dependent restitution coefficient as com-
perature be sufficiently small and/or the time be sufficientlypared to the case of constaat Since the temperature de-

large[23]. For a constant restitution coefficient one obtains creases more slowly for the former caseas

53 as com-
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pared with~t~2 for the latter one, retarded clustering may stage of evolution, when clustering starts. Thus, the tempera-
be expected. ture may indicate the stage of evolution of a granular gas.
One might wish to define the average cumulative numbeiThe recent numerical results of R¢R4] strongly support
of collisions per particleNV(t) as a system-inherent time our assumption. It was shown that whilé. differs by more
scale ¢ is the laboratory timeand compare dynamics of the than a factor of 3 for two different systemgd/{=70 for a
systems in their inherent time scalg¥(t) is easily acces- system withe=0.9 and packing fractiop=0.245, and\/;
sible in numerical simulations and is a convenient quantity to=23 for e=0.6 and¢=0.05[24]), the values of/; [defined
analyze evolution of granular gasesg.,[24,26). It may be  asT(MN;)/T,], are very close T.;~0.0031 for the first sys-
found by integratingd V= 7.(t) "'dt [14]. For a constant tem and7,~0.0027 for the seconfR4]). These arguments
restitution coefficient one obtain&{t)~Int, while for the = show that one could considdras a relevant time scale to
impact-velocity-dependent/(t) ~t6. Therefore, the mean- analyze granular gas evolution.
square displacement behaves identically in both cases as ~ With T(N)/T,~e 27 for a constant restitution coeffi-
) cient andT(N)/T,~N 1% for an impact-velocity-dependent
(ArM])~N. (47 one, we obtair{(Ar)?)~In 7 for the case of constartand

If the number of collisions per particl&/{(t) were the only ((Ar)2)~TH10 (48)
guantity specifying the stage of the granular gas evolution,

one would conjecture that the dynamical behavior of afor the velocity-dependent restitution coefficient. Thus, for
granular gas with a constaatand a velocity-depende®tis  the temperature-based inherent time scale we again obtain a
identical provided theV-based time scale is used. According power law dependence for the latter system and a logarith-
to our understanding, however, this is not an adequate denijcally weak time-dependence for the former.

scription of physical reality. Indeed, as was shown in Ref. |n conclusion, we found that that the impact-velocity de-
[24], the values of\; corresponding to a crossover from the pendence of the restitution coefficieatsignificantly influ-
linear regime of evolutionwhich refers to homogeneous ences the mean-square displacement of the particles in a
cooling to the nonlinear regimévhen clustering starisnay  granular gas in laboratory time. As compared with the loga-
differ by orders of magnitude, depending on the restitutioryithmically weak time dependence found for a constant res-
coefficient and on the density of the granular gas. Thereforejtution coefficient, the impact-velocity-depending coefficient
to analyze the behavior of a granular gas one can try an) yields a power law(43). It causes increasingly enhanced
alternative inherent time scale] '=T(t)/T,, which is  spreading of the particles through the system. This together
based on the gas temperaty5]. Given two systems of with the fact that the temperature decreases more slowly for
granular particles at the same density and the same initiahe velocity-dependent leads to the suggestion of retarded
temperatureT,, consisting of particles colliding with con- clustering in such systems.

stant and velocity-dependent restitution coefficients, respec- we also analyzed the mean-square displacement of par-
tively, the time7 allows us to compare their evolution di- ticles using different inherent time scales. We found that
rectly. A strong argument for using a temperature-based timghile for the number-of-collisions-based time scale both sys-
has been given by Goldhirsch and Zangtf]. They found  tems behave identically, for the temperature-based time scale
that there are two main contributions to the rate of temperapower law behavior is still observed for the case of the
ture decay. The first refers to cooling due to inelastic colli-velocity-dependent coefficient and logarithmically weak be-
sions with a rate~T*? (for constante) and corresponds to havior for the case of constaat

homogeneous cooling. The second refers to viscous heating

and behaves as T2 Initially, the first is much larger than ACKNOWLEDGMENTS

the second, but when temperature decays, the second contri-

bution takes over and the shear wave adiabatically enslaves We thank M. H. Ernst and I. Goldhirsch for valuable dis-
the temperature fielfil]. This corresponds to the nonlinear cussions.

[1] I. Goldhirsch and G. Zanetti, Phys. Rev. Létf, 1619(1993. ibid. 55, 1940(1997; G. Kuwabara and K. Kono, Jpn. J. Appl.
[2] S. McNamara and W. R. Young, Phys. ReVs® R28(1993. Phys., Part 26, 1230(1987).
[3] P. Deltour and J. L. Barrat, J. Phys7,1137(1997; F. Spahn, [6] T. Schwager and T. Rahel, Phys. Rev. B7, 650(1998.
U. Schwarz, and J. Kurths, Phys. Rev. L&8, 1596 (1997); [7] R. Ramrez, T. Pschel, N. V. Brilliantov, and T. Schwager,
T. Aspelmeier, G. Giese, and A. Zippelius, Phys. Re\67: Phys. Rev. E60, 4465(1999.
857 (1997). [8] These conditions may be satisfied, e.g., for ice at very low
[4] R. M. Brach, J. Appl. Mech56, 133(1989; S. Wall, W. John, temperaturgiin the context of planetary ring dynamjcsrhe
H. C. Wang, and S. L. Goren, Aerosol. Sci. Techrid, 926 experimental results by Bridges al. (Fig. 1 of the last refer-
(1990; W. Goldsmith,Impact: The Theory and Physical Be- ence in[4]) can be fitted with good accuracy with the coeffi-
haviour of Colliding SolidSEdward Arnold, London, 1960 cient of restitution of the viscoelastic mod@lig. 1 of the first
P. F. Luckham, Powder Techndg, 75(1989; F. G. Bridges, reference in5)).

A. Hatzes, and D. N. C. Lin, Natuig&ondon 309 333(1984. [9] S. E. Esipov and T. Behel, J. Stat. Phy86, 1385(1997.
[5] N. Brilliantov, F. Spahn, J.-M. Hertzsch, and T.debel, Phys. [10] T. P. C. van Noije and M. H. Ernst, Physica 261, 266
Rev. E53, 5382(1996; W. A. M. Morgado and I. Oppenheim, (1998.



PRE 61 SELF-DIFFUSION IN GRANULAR GASES 1721

[11] T. P. C. van Noije and M. H. Ernst, Granular Matter 57 66, 2821 (1977; N. V. Brilliantov and O. P. Revokatov,
(1998. Chem. Phys. Lettl04, 444(1984).

[12] Referenced9-11] investigate the velocity distribution func- [20] M. Huthmann and A. Zippelius, Phys. Rev. &6, R6275
tion for constantrestitution coefficient and find that the Max- (1997; S. Luding, M. Huthmann, S. McNamara, and A. Zip-
well distribution is a good approximation. For the velocity- pelius,ibid. 58, 3416(1998.
dependent restitution coefficient we expect the velocity[21] Note that Eq.(33) is an expansion in terms oha?°TY0,
distribution is close to the Maxwellian too. Thus, it restricts the temperatufieto be small as compared

[13] The hydrodynamic contribution to the self-diffusion coefficient with A= %0a 4,

grows with time (as a time integral of the time correlation [22] The equations for ag—a, are a,=(3/4)2Y°C,I'(16/
function). For granular materials it may be much more impor- 5)/T'(21/10), a;=2a,=4.603 49, a2=(37/10)a(2)=19.6025,
tant than for fluids due to long-ranged spatial correlations in az=a,/2+ (3/4)2YT (21/10)C,=3.341 64, a,=a,2—(2/
the velocity field[14]. This problem is beyond the scope of the 5)a,az+a3— (7/40)a2 —(27/40) 2T (11/5)C3=9.80041.

present study. [23] To neglect terms of the order of 52 in Eq. (41) the following
[14] T. P. C. van Noije and M. H. Ernst, R. Brito, and J. A. G. condition is requiredtY%in t>Aa? T3,
Orza, Phys. Rev. Letf79, 411(1997. [24] R. Brito and M. H. Ernst, Europhys. Le#3, 497 (1998.
[15] The term “pseudo” was initially used to refer to the dynamics [25] Another problem of using the number of collision as an inher-
of systems with singular hard-core potenfiz6,17). ent time is connected with the phenomenon of inelastic col-
[16] M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van lapse[2], where an infinite number of collisions occurs in fi-
Leeuwen, Physica A5, 127 (1969. nite time. Suppose three particles offaite) system undergo
[17] P. Resibois and M. de LeeneGlassical Kinetic Theory of an inelastic collapse at timg*, hence NM(t—t*)—. This
Fluids (Wiley, New York, 1977. situation may occur in a homogeneously cooling system. If we
[18] For application to “ordinary” fluids, se€19], and to granular chooseN to be the system inherent time, this time scale does
systemd10,20. A rigorous definition of£ includes a prefac- not allow us to describe the evolution of the system for times
tor, preventing successive collisions of the same pair of par- larger thant*, whereas the temperature-based time s@ake
ticles [16,17, which, however, does not affect the present unaffected by the collapse.
analysis. [26] S. McNamara and W. R. Young, Phys. Rev.53, 5089

[19] D. Chandler, J. Chem. Phy&0, 3500(1974); B. J. Bernejbid. (1996.



